Recall:
For $f=F^{\prime}$ we have

$$
\left.F(x)\right|_{a} ^{b}=F(b)-F(a)=\int_{a}^{b} f(t) d t
$$

We also write

$$
\int f(x) d x=F(x)
$$

Example 7.4:
i) Let $s \in \mathbb{R}, s \neq-1$. Then we have

$$
\int_{a}^{b} x^{s} d x=\left.\frac{x^{s+1}}{s+1}\right|_{a} ^{b}
$$

where we have the following restrictions for the integration interval:
for $s \in \mathbb{N}, a, b \in \mathbb{R}$ arbitrary; for $s \leq-2$, the interval $[a, b]$ should not contain 0 (otherwise F not continuous there)
ii) For $a, b>0$ we have

$$
\int_{a}^{b} \frac{d x}{x}=\left.\log x\right|_{a} ^{b}
$$

For $a, b<0$ we have

$$
\begin{gathered}
\int_{a}^{b} \frac{d x}{x}=\left.\log (-x)\right|_{a} ^{b}, \text { as } \frac{d}{d x} \log (-x)=\frac{1}{x} \\
\\
\text { for } x<0 .
\end{gathered}
$$

Summarizing, we get:

$$
\int \frac{d x}{x}=\log |x|, \text { for } x \neq 0
$$

(O should not lie in the integration interval)
iii) $\int \sin x d x=-\cos x$
iv) $\int \cos x d x=\sin x$
v) $\int \exp x d x=\exp x$
vi) $\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x$ for $|x|<1$.
vii) $\int \frac{d x}{1+x^{2}}=\arctan x$.
viii) $\int \frac{d x}{\cos ^{2} x}=\tan x$
where $\cos x \neq 0$ in the integration interval.

Proposition 7.11 (Substitution rule):
Let $f:[\rightarrow \mathbb{R}$ be a continuous function and $\varphi:[a, b] \longrightarrow \mathbb{R}$ a continuously differentiable function with $\varphi([a, b]) \subset I$. Then we have

$$
\int_{a}^{b} f(\varphi(t)) \varphi^{\prime}(t) d t=\int_{\varphi(a)}^{\varphi(b)} f(x) d x .
$$

Proof:
Let $F: I \longrightarrow \mathbb{R}$ be an indefinite integral of f. For the function $F_{\circ} \varphi:[a, b] \longrightarrow \mathbb{R}$ we have using the chain rule

$$
\begin{aligned}
&(F \circ \varphi)^{\prime}(t)=F^{\prime}(\varphi(t)) \varphi^{\prime}(t)=f(\varphi(t)) \varphi^{\prime}(t) \\
& \xrightarrow{\text { Th. } 7.2} \int_{a}^{b} f(\varphi(t)) \varphi^{\prime}(t) d t=\left.(F \circ \varphi)(t)\right|_{a} ^{b} \\
&=F(\varphi(b))-F(\varphi(a))=\int_{\varphi(a)}^{\varphi(b)} f(x) d x
\end{aligned}
$$

Notation:

$$
d \varphi(t):=\varphi^{\prime}(t) d t
$$

and $\int_{a}^{b} f(\varphi(t)) d \varphi(t)=\int_{\varphi(a)}^{\varphi(b)} f(x) d x$.

Example 7.5:
i) $\int_{a}^{b} f(t+c) d t=\int_{a+c}^{b+c} f(x) d x, \quad$ (substitution $\left.\varphi(t)=t+c\right)$
ii) For $c \neq 0$ we have

$$
\int_{a}^{b} f(c t) d t=\frac{1}{c} \int_{a c}^{b c} f(x) d x, \quad(\varphi(t)=c t)
$$

iii) $\int_{a}^{b} t f\left(t^{2}\right) d t=\frac{1}{2} \int_{a^{2}}^{b^{2}} f(x) d x, \quad\left(\varphi(t)=t^{2}\right)$
iv) Let $\varphi:[a, b] \rightarrow \mathbb{R}$ be a continuously differentiable function with $\varphi(t) \neq 0$ for all $t \in[a, b]$. Then we have

$$
\int_{a}^{b} \frac{\varphi^{\prime}(t)}{\varphi(t)} d t=\left.\log |\varphi(t)|\right|_{a} ^{b}, \quad\left(f(x)=\frac{1}{x}, x=\varphi(t)\right)
$$

$v)$ Let $[a, b] \subset\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then we have

$$
\int_{a}^{b} \tan t d t=\int_{a}^{b} \frac{\sin t}{\cos t} d t=-\left.\log \cos t\right|_{a} ^{b}
$$

vi) In order to compute $\int_{a}^{b} \frac{d x}{1-x^{2}}$, where $-1,1 \notin[a, b]$, ane uses the following:
As $1-x^{2}=(1-x)(1+x)$, we solve for $\alpha, s \in \mathbb{R}$ such that

$$
\frac{1}{1-x^{2}}=\frac{\alpha}{1-x}+\frac{\beta}{1+x},
$$

ar

$$
\frac{1}{1-x^{2}}=\frac{(\alpha+\beta)+(\alpha-\beta) x}{1-x^{2}}
$$

$\Rightarrow \alpha=\beta=\frac{1}{2}$. This implies

$$
\begin{aligned}
\int_{a}^{b} \frac{d x}{1-x^{2}} & =\frac{1}{2}\left(\int_{a}^{b} \frac{d x}{1-x}+\int_{a}^{b} \frac{d x}{1+x}\right) \\
& =\frac{1}{2}\left(\int_{a}^{b} \frac{d x}{1+x}-\int_{a}^{b} \frac{d x}{x-1}\right) \\
& =\left.\frac{1}{2}(\log |x+1|-\log |x-1|)\right|_{a} ^{b} \\
& =\frac{1}{2} \log \left|\frac{x+1}{x-1}\right|_{a}^{b}
\end{aligned}
$$

vii) In order to compute $\int \frac{d x}{\sqrt{1+x^{2}}}$, use the substitution $x=\sinh t=\frac{1}{2}\left(e^{t}-e^{-t}\right)$. As

$$
d \sinh t=\cosh t d t, \cosh ^{2} t-\sinh ^{2} t=1,
$$

$$
\operatorname{arsinh} x=\log \left(x+\sqrt{1+x^{2}}\right), \quad \text { Homework) }
$$

we get with $u:=\operatorname{Arsinh} a, v:=\operatorname{Arsinh} b$

$$
\begin{aligned}
\int_{a}^{b} \frac{d x}{\sqrt{1+x^{2}}} & =\int_{u}^{v} \frac{d \sinh t}{\sqrt{1+\sinh ^{2} t}}=\int_{u}^{\nu} \frac{\cosh t}{\cosh t} d t=\left.t\right|_{u} ^{\nu} \\
& =\left.\log \left(x+\sqrt{1+x^{2}}\right)\right|_{a} ^{b}
\end{aligned}
$$

viii) Computation of $\int_{a}^{b} \frac{d x}{\sqrt{x^{2}-1}},(a, b>1)$.

We substitute $x=\cosh t=\frac{1}{2}\left(e^{t}+e^{-t}\right)$. As

$$
\begin{aligned}
d \cosh t & =\sinh t d t \\
\text { Ar cosh } x & =\log \left(x+\sqrt{x^{2}-1}\right)
\end{aligned}
$$

it follows with $u:=\operatorname{Arcosh} a, v:=\operatorname{Arcosh} b$

$$
\begin{aligned}
\int_{a}^{b} \frac{d x}{\sqrt{x^{2}-1}} & =\int_{u}^{v} \frac{\sinh t}{\sinh t} d t=\left.t\right|_{u} ^{v} \\
& =\left.\log \left(x+\sqrt{x^{2}-1}\right)\right|_{a} ^{b} .
\end{aligned}
$$

Proposition 7.12 (Partial integration):
Let $f_{1} g:[a, b] \rightarrow \mathbb{R}$ be two continuously differentiable functions. Then

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} g(x) f^{\prime}(x) d x
$$

A short hand notation for this formula is:

$$
\int f d g=f g-\int g d f
$$

Proof:
For $F:=f g$ we have according to the product law:

$$
F^{\prime}(x)=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

and thus according to Theorem 7.2 :

$$
\begin{aligned}
& \int_{a}^{b} f^{\prime}(x) g(x) d x+\int_{a}^{b} f(x) g^{\prime}(x) d x=\left.F(x)\right|_{a} ^{b} \\
& \quad=\left.f(x) g(x)\right|_{a} ^{b}
\end{aligned}
$$

\Rightarrow from this the claim follows.

Example 7.6:
i) Let $a, b>0$. In order to compute $\int_{a}^{b} \log x d x$ we set $f(x)=\log x, g(x)=x$.

$$
\begin{aligned}
\int_{a}^{b} \log x d x & =\left.x \log x\right|_{a} ^{b}-\int_{a}^{b} x d \log x \\
& =\left.x \log x\right|_{a} ^{b}-\int_{a}^{b} d x \\
& =\left.x(\log x-1)\right|_{a} ^{b} .
\end{aligned}
$$

ii) Computation of $\int \arctan x d x$.

$$
\int \arctan x d x=x \arctan x-\int x d \arctan x
$$

As $\frac{d}{d x} \arctan x=\frac{1}{1+x^{2}}$, we get

$$
\begin{aligned}
\int x d \arctan x & =\int \frac{x}{1+x^{2}} d x=\begin{array}{c}
(\text { substitution } \\
\left.t=x^{2}\right)
\end{array} \\
& =\frac{1}{2} \int \frac{d t}{1+t}=\frac{1}{2} \log (1+t) \\
& =\frac{1}{2} \log \left(1+x^{2}\right) \\
\Rightarrow \int \arctan x d x & =x \arctan x-\frac{1}{2} \log \left(1+x^{2}\right)
\end{aligned}
$$

